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NOTE

Defining Wave Amplitude in Characteristic
Boundary Conditions

Key Words:Euler compressible equations; characteristic boundary conditions;
nonreflecting conditions; initial conditions.

Characteristic treatment of boundary conditions for the Euler equations relies on deter-
mining the strength of the waves entering the computational domain as a function of the
strength of the outgoing waves and the physical boundary conditions. The purpose of this
note is to demonstrate how critical the definition chosen for the wave amplitudes can be.

The 2D Euler equations may be expressed in quasi-linear form as

∂V
∂t
+ A

∂V
∂x
+ B

∂V
∂y
= 0. (1)

HereV= (ρ, u, v, P)T is the vector of primitive variables and each of the matricesA and
B has its own complete set of real eigenvalues and right and left eigenvectors. The matrix
En defined asAnx + Bny can be introduced, wheren is chosen as the outward normal to
the boundary under consideration. By diagonalizingEn the eigenvalue matrix

Λn = LnEnL−1
n = diag

(
λ1

n, λ
2
n, λ

3
n, λ

4
n

) = diag(un, un, un + c, un − c), (2)

is obtained, whereun= u · n andc is the speed of sound. The matricesLn (L−1
n ) with left

(right) eigenvectors as rows (columns) relate variations in the characteristic variablesWn

to variations in the primitive vectorV through the relations

δWn = LnδV, δV = L−1
n δWn. (3)

In 2D, the four characteristic variables satisfy a set of convection equations with the speed of
propagation given by Eq. (2), with source terms related to pressure and velocity variations
in thes-direction, wheres forms an orthonormal basis(n, s) with n. These equations are
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obtained by premultiplying Eq. (1) byLn. The fourth equation reads

∂W4
n

∂t
+ (u− cn) ·∇W4

n + cs ·∇W2
n = 0. (4)

Applying an explicit Euler time discretization to Eq. (1), the update of primitive variables
can be written as

1V = Vn+1− Vn = −1tR = −1t

[
A
∂V
∂x
+ B

∂V
∂y

]
. (5)

For a given boundary with normaln, the full residualR of Eq. (5) can be split into a
normal componentRn (involving only normal derivatives) and a tangential componentRs

(involving only derivatives alongs). Let us defineVn as the boundary value at time level
n, andδVP the predicted boundary update from the interior scheme, prior to application of
the boundary condition. Define alsoδVP

w as the component ofδVP to which the boundary
condition will be applied, andδVU = δVP − δVP

w as the part of the boundary update which
is not affected by the characteristic boundary condition. Typically, a characteristic based
boundary treatment is applied as follows:

1. Choose the part of the residual(δVP
w) to which the boundary conditions are to be

applied. If it is the complete residual,δVU = 0.
2. From Eq. (3), decomposeδVP

w, into characteristic variationsδWin,P
n andδWout

n due to
ingoing and outgoing waves, with corresponding primitive variationsδV in,P

w andδVout
w .

3. Modify the amplitude of the incoming wave(s)δWin,P
n according to the physical

requirements at the boundary. This produces the corrected amplitudes,δWin,C
n . Retain the

outgoing wavesδWout
n or δVout

w as they are.
4. Combine the wavesδWin,C

n and δWout
n , and usingL−1

n , Eq. (3), transform back to
primitive variables. This givesδVC

w. The boundary point is then updated as

Vn+1 = Vn + δVU + δVC
w = Vn + δVU + δV in,C + δVout.

The decomposition of the Euler equations into a set of waves traveling normally to the
boundary provides a theoretical basis to derive proper boundary condition treatments, fol-
lowing steps 2–3–4 above. However, such theory gives no indication of the best definition
for the part of the update to which the boundary conditions are to be applied. This is the
principal reason why so many different formulations are discussed in the literature [1–8].

Let us define an approach, we shall call thefull residualapproach, as a boundary treatment
such that in step 1 aboveδVP

w =−1tR. Following steps 2–4, in the case of a 2D subsonic
outlet, this leads to the nonreflecting boundary condition

∂W4

∂t
= 0= −∂un

∂t
+ 1

ρc

∂P

∂t
(6)

which is equivalent to that proposed in [1–4].
Similarly, we shall define thenormalapproach as the boundary treatment such that for

step 1,δVP
w =−1tRn. This leads to the nonreflecting condition

(un − c)
∂W4

∂n
= 0= (un − c)

[
−∂un

∂n
+ 1

ρc

∂P

∂n

]
(7)
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which is equivalent to the forms in [5, 6], although presented in a completely different for-
malism. Hirsch [7] argues that the nonreflecting condition has to be applied to the advection
terms of the bicharacteristic equations

(un − c)
∂W4

∂n
+ us

∂W4

∂s
= 0. (8)

Following Giles [8], the analysis of the linearized Euler equations based on a Fourier
decomposition of the solution at the boundary gives

∂W4

∂t
= −un

∂W2

∂s
− us

∂W4

∂s
; (9)

Eqs. (6), (7), (8), and (9) are all nonreflecting boundary conditions based on characteristic
analysis. In 1D, they all reduce to one of the forms (un− c) (∂W4/∂n)= 0 or∂W4/∂t = 0
which are equivalent since the last characteristic equation is simply∂W4/∂t + (un − c)
(∂W4/∂n) in this case. However, these boundary treatments are not equivalent in 2D. It
transpires that under certain circumstances they can even produce completely different
results.

For example, consider the computation domain defined spatially by 0< x< 1 and 0<
y< 1. The initial condition is uniform for the density and the static pressure, and zero for
the velocity in they-direction. For the streamwise velocity, we imposeu(x, y)=U0(1.5+
tanh(10(y− 0.5))) for x= 0 andu(y)= 0 elsewhere.U0 is chosen such that the flow is
subsonic everywhere. Thefull residualapproach is used at the inlet to impose the veloc-
ity components and the temperature while a nonreflecting condition is tested at the outlet.
Thenormalnonreflecting characteristic condition is used for bothy= 0 andy= 1 to allow
acoustic disturbances in they-direction to leave the domain. The velocity profile is ex-
pected to propagate downstream during the computation. The steady solution is obviously
u(x, y)= u(0, y) for all x. Typical velocity profiles obtained after convergence with both
thefull residualandnormalformulations at the outlet boundary are shown in Fig. 1.

Clearly thefull residualoutlet condition prevents the given velocity profile from propa-
gating along thex-direction. Instead, theu-velocity tends to be uniform near the exit. On
the other hand, the use of thenormalapproach leads to the correct velocity profiles. Both
the Hirsh and the Giles formulations allow the hyperbolic tangent profile to propagate as

FIG. 1. Velocity profiles at different abscissa for the full residual (left) and the normal (right) non-reflecting
outlet boundary condition.
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FIG. 2. Time evolutions of the streamwise (left) and the normal (right) velocity component at a point at the
outlet boundary for the Giles (dashed line) andnormal(solid line) formulations.

expected, but the relaxation time to the steady state is longer with the Giles condition (see
Fig. 2).

These dramatic differences may be explained by formulating all the boundary conditions
in the same framework. Any (nonreflecting) boundary condition can be written either in
terms of time derivatives (temporal form) or in terms of normal derivatives (spatial form).
These two forms are linked through the compatibility relation, Eq. (4), and imposing a
boundary condition on the time derivative can be translated into a condition on the normal
derivative and vice versa. An overview of the various conditions considered, written in their
two equivalent forms (temporalandspatial), is given in Table I.

This table provides a formal comparison of these boundary conditions. Of course, the
results of a computation depends only on the choice of the boundary (the rows in the table)
andnot on the form under which it is written (the columns in the table). Thefull residual
formulation imposes∂W4

n/∂t = 0 and thus forces the temporal evolutions of the streamwise
velocity and the pressure to remain nearly proportional. At the initial time, both quantities
are uniform at the exit, so that their profiles keep the same shape during the computation if
1/ρc does not depend ony. This feature of the solution at the boundary is well predicted by
the computation (not shown) but is not compatible with the present physical configuration.
Actually the full residual approach is likely to give incorrect results as soon as the initial
conditions at the boundary are inconsistent with the actual flow structure. Thetemporal
forms of the other three boundary treatments (see Table I) show that the temporal evolution

TABLE I

Correspondence between theTemporaland theSpatialForm for Some

Nonreflecting Boundary Conditions; 2D Case

Name Temporal form Spatial form

Thompson [4] ∂W4

∂t
= 0, Eq. (6) ∂W4

∂n
=− 1

un−c
hus

∂W4

∂s
+ c ∂W2

∂s
j

Poinsot [6] ∂W4

∂t
=−hus

∂W4

∂s
+ c ∂W2

∂s
j ∂W4

∂n
= 0, Eq. (7)

Hirsh [7] ∂W4

∂t
=−c ∂W2

∂s
∂W4

∂n
=− us

(un−c)
∂W4

∂s
, Eq. (8)

Giles [8] ∂W4

∂t
=−un

∂W2

∂s
− us

∂W4

∂s
, Eq. (9) ∂W4

∂n
= ∂W2

∂s
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of the velocity and the pressure are no longer proportional. Three different terms appear in
the right-hand side of thetemporal forms, namelyA= us(∂W4/∂s), B= c(∂W2/∂s) and
C= un(∂W2/∂s). At least one term is needed to ensure that the given boundary condition
can reach the correct steady state. For Hirsh’s condition which leads to results that are
equivalent to thenormalapproach, the term denoted above asA is not critical (this term is
the difference between two boundary conditions which give the same results; see Table I).
Thus the termB is responsible for the success of the computations with those conditions.
One observes also that the termC in the Giles treatment is nothing but a factor ofun/c
smaller thanB in the present subsonic test case. Accordingly, with the Giles treatment the
relaxation time to the steady state has been found to be loner than for the other conditions
(see Fig. 2). More details of the present study are available in [9], including the 3D version
of Table I and implementation details of the boundary treatments for a flow solver based
on hybrid meshes. Some preliminary runs were performed by Dr. G. Hernandez. All the
computations were done with the Fortran library AVBP/COUPL developed at CERFACS.
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